Surname	Centre Number	Candidate Number
Other Names		0

GCSE - NEW

3430UB0-1

SCIENCE (Double Award)

Unit 2: CHEMISTRY 1
HIGHER TIER

WEDNESDAY, 13 JUNE 2018 – MORNING

1 hour 15 minutes

For Examiner's use only			
Question	Maximum Mark	Mark Awarded	
1.	8		
2.	7		
3.	6		
4.	8		
5.	5		
6.	6		
7.	11		
8.	9		
Total	60		

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** guestions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

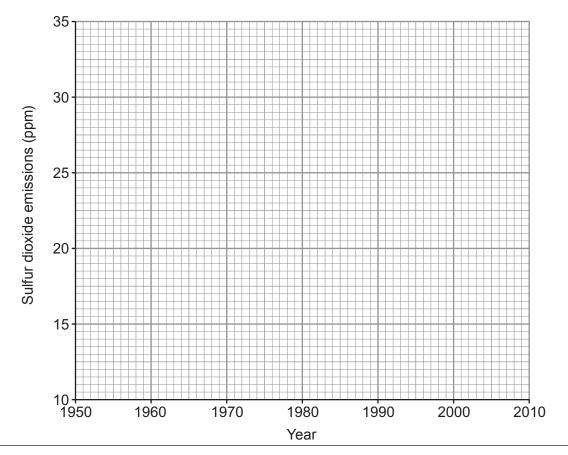
Question 6 is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

Examiner

only

Answer all questions.


1. Burning fossil fuels containing sulfur causes sulfur dioxide, SO_2 , to be released into the atmosphere.

The table shows sulfur dioxide emissions in the UK between 1950 and 2010.

Year	Sulfur dioxide emissions (ppm)
1950	12.0
1960	16.0
1970	21.5
1980	29.5
1990	29.0
2000	24.0
2010	18.5

ppm = parts per million

(a) (i) On the grid plot the sulfur dioxide emissions against the year and draw a suitable line. [3]

© WJEC CBAC Ltd.

PMT

	(ii)	Describe how sulfur dioxide emissions changed between 1950 and 2010.	[2]
	(iii)	The UK government introduced a regulation to reduce sulfur dioxide emissions the 1980s. From your graph, state why it is difficult to decide exactly the year who have regulation came into force.	s in hen [1]
(b)		ur dioxide can be converted to sulfur and water by reacting it with hydrogen sulf	ïide,
	H ₂ S.	plete and balance the symbol equation for this reaction.	[2]
	Com		[2]
	Com	plete and balance the symbol equation for this reaction.	[2]
	Com	plete and balance the symbol equation for this reaction.	[2]
	Com	plete and balance the symbol equation for this reaction.	[2]

(3430UB0-1) © WJEC CBAC Ltd.

Turn over.

2	The table shows	some physical	nronerties	of Group 6	elements
۷.	THE LADIE SHOWS	some pmysical	hinheires	of Gloup o	elements.

Element	Melting point (°C)	Boiling point (°C)	Density (g/cm ³)	Electrical conductor
oxygen	-219	-183	0.0014	no
sulfur	115	445	2.0	no
selenium	221	685	4.8	semi-conductor
tellurium	450	988	6.2	semi-conductor

(a)	(i)	Describe the trend in the melting points of the Group 6 elements.	[1]
	(ii)	Give the physical state of selenium at 400 °C. Give a reason for your choice.	[2]
	(iii)	Explain why it is difficult to classify selenium as either a metal or a non-metal.	[1]

PMT

(b) Selenium dioxide reacts with sodium hydroxide to produce sodium selenite and water.

$$SeO_2$$
 + 2NaOH \longrightarrow Na_2SeO_3 + H_2O
selenium sodium selenite

(i) Calculate the relative formula mass (M_r) of sodium selenite, Na₂SeO₃. [1]

$$A_{r}(Na) = 23$$
 $A_{r}(Se) = 79$ $A_{r}(O) = 16$

$$M_r =$$

(ii) Calculate the percentage by mass of selenium in sodium selenite. [2]

7

2	(0)	The table gives the composition of six particles, A-F , which are either atoms or ions.
J.	(a)	THE LADIE CIVES THE COMBOSITION OF SIX DALLICIES. A-F. WHICH ARE EITHER ALONIS OF IONS.
	1-7	

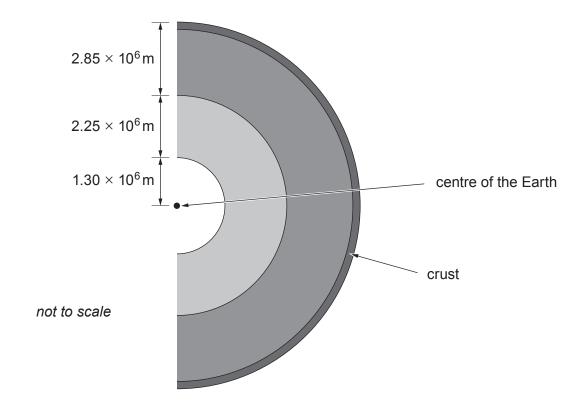
Particle	Number of protons	Number of neutrons	Number of electrons
Α	14	14	14
В	19	20	18
С	15	16	18
D	16	16	16
E	11	12	11
F	12	12	10

	(i)	Which particles are atoms? Explain your choice.	[2]
	(ii)	Which particles are positive ions? Give the charges on the particles you have chosen.	ave [2]
(b)		bon has two isotopes – carbon-12 and carbon-14. ng these examples, explain what is meant by the term <i>isotope</i> .	[2]

6

© WJEC CBAC Ltd.

PMT


BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

PMT

4. The Earth is almost spherical. The diagram shows a section of the layered structure of the Earth.

(a) The thickness of the crust at one location is 0.97 % of the distance from the surface to the centre of the Earth.

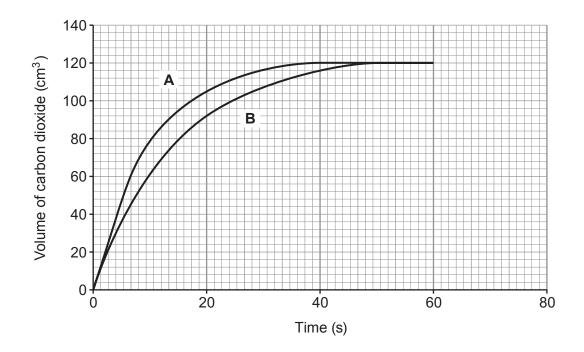
Use this information to calculate the thickness of the crust. Give your answer in **standard form**. [3]

Thickness of crust = m

© WJEC CBAC Ltd.

ΠE>			
	[3]	Describe the theory of plate tectonics.	(b)
			-
e]	formed at a constructive plate c Ridge. [2]	Iceland lies on the Mid-Atlantic Ridge which is boundary. Explain the formation of the Mid-Atlanti	
		NORTH AMERICAN BEURASIAN PLATE ICELAND ICELAND	

8


3430UB01 09

© WJEC CBAC Ltd. (3430UB0-1)

Turn over.

5. The rate of reaction between hydrochloric acid and calcium carbonate was studied. Two experiments, **A** and **B**, were carried out. The same concentration of acid and the same mass of calcium carbonate were used, with the acid in excess each time. The volume of gas produced was measured for 60 seconds. The results of these experiments are shown in the graphs.

, ,	higher rate seen in experiment A.	[4]
•••••		
•••••		· · · · · · · · ·
(b)	State how the graphs show that the same mass of calcium carbonate was used in experiments.	both [1]

Using the particle theory, state and explain two factors that may be responsible for the

5

(a)

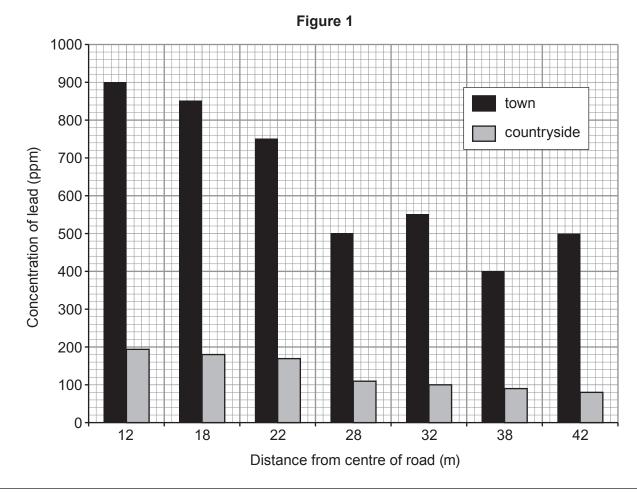
6.	Explain the trends in reactivity of the elements in Groups 1 and 7 of the Periodic Table.	[6 QER]	Examine only
<u></u>			
<u></u>			
<u></u>			
<u></u>			
•••••			
			6

© WJEC CBAC Ltd. (3430UB0-1) Turn over.

	expected results. You do			out which is	nsure a fair	
	test.				[4]	
•••••						
•••••						
• • • • • • • • • • • • • • • • • • • •					•••••	
(ii)	The samples from part (and sent to ha	ve their ion	
(ii)		ble shows the	results.		ve their ion	
(ii)		lon content	in water sampl	e (mg/dm³)	ve their ion	
(ii)	lons present	lon content	in water sampl	e (mg/dm³)	ve their ion	
(ii)	lons present sodium	lon content X 29	in water sampl Y 116	e (mg/dm³) Z 23	ve their ion	
(ii)	lons present sodium potassium	lon content X 29 12	in water sampl Y 116 15	e (mg/dm³) Z 23 11	ve their ion	
(ii)	lons present sodium potassium magnesium	lon content X 29 12 31	in water sampl Y 116 15	e (mg/dm³) Z 23 11 98	ve their ion	
(ii)	lons present sodium potassium magnesium calcium	Ion content X 29 12 31 141	results. in water sampl Y 116 15 4 2	e (mg/dm³) Z 23 11 98 27	ve their ion	
(ii)	lons present sodium potassium magnesium calcium hydrogencarbonate	lon content X 29 12 31 141 30	results. in water sampl Y 116 15 4 2 19	e (mg/dm³) Z 23 11 98 27 219	ve their ion	
(ii)	lons present sodium potassium magnesium calcium hydrogencarbonate chloride	Ion content X 29 12 31 141	results. in water sampl Y 116 15 4 2	e (mg/dm³) Z 23 11 98 27	ve their ion	
(ii)	lons present sodium potassium magnesium calcium hydrogencarbonate	lon content X 29 12 31 141 30	results. in water sampl Y 116 15 4 2 19	e (mg/dm³) Z 23 11 98 27 219	ve their ion	

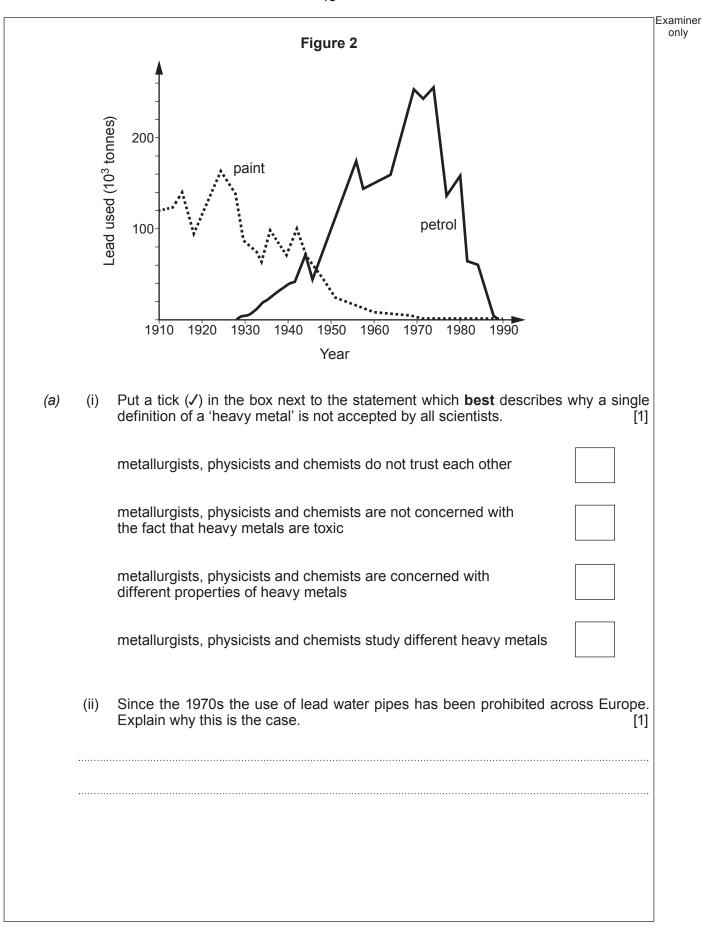
© WJEC CBAC Ltd.

				13		
(b)	(i)	Permar works.	nent hard water c	an be softened by	ion exchange. Explain h	now ion exchange [2]
	(ii)	Explain	why the resin in	ion exchange sto	ps working after continu	ued use. [1]
(c)	Calc	culate the	number of moles	s of calcium sulfat	g of dissolved calcium e present.	sulfate, CaSO ₄ .
	GIVE	your ans	swer to three sig	1 mg = 0.001 g		[2]
			$A_{\rm r}({\rm Ca}) = 40$	$A_{\rm r}(\rm S) = 32$	$A_{\rm r}({\rm O}) = 16$	[-]
				Moles of calo	sium sulfate =	mol



8. The most common understanding of the term 'heavy metal' is a metallic element which is toxic and has a high density, atomic number and relative atomic mass. The definitions used vary depending on the context. In metallurgy, for example, a heavy metal is defined on the basis of density, whereas in physics the distinguishing factor is atomic number. A chemist would likely be more concerned with chemical behaviour. More specific definitions have been published but none of these have been widely accepted.

Despite this lack of agreement, the term is widely used in science. Heavy metals are sometimes defined as metals with a density greater than 5 g/cm³. They are often highly toxic or damaging to the environment. Chromium, arsenic, cadmium, mercury and lead have the greatest potential to cause harm on account of their extensive use.


Heavy metals are dangerous because they tend to bio-accumulate. Bio-accumulation occurs when the toxic chemical is taken into the body faster than it can be excreted. Lead can have an adverse impact on mental development in infants and children. Lead may also be a factor in behavioural problems. Heavy metal poisoning could result, for instance, from drinking-water contamination.

Lead is the most prevalent heavy metal contaminant. As a component of tetraethyl lead, (CH₃CH₂)₄Pb, it was used extensively in 'leaded petrol' from the 1930s-1970s. Although the use of leaded petrol has been phased out, soils next to roads can have high lead concentrations – see **Figure 1**. Lead-based paints were another early source of lead pollution but their use is now banned in the UK. **Figure 2** opposite shows how the amount of lead used in paint and petrol in the USA changed over the 20th century.

© WJEC CBAC Ltd. (3430UB0-1)

	Exam
(iii)	Put a tick (/) in the box next to the two statements which describe the conclusions that can be drawn from the data in Figure 1 . [2]
	lead contamination in road-side soil decreases in towns and in the countryside as the distance from the centre of the road increases
	the decrease in lead contamination between 12 m and 42 m from the centre of the road is greater in towns than in the countryside
	lead contamination in road-side soil at all distances is much greater in towns than in the countryside
	lead contamination in road-side soil decreases between 12 m and 42 m from the centre of the road in the countryside
	there is approximately 50% more lead contamination in road-side soil in towns compared to the countryside between 12m and 28m from the centre of the road
	there is an overall decrease of nearly 70 % in the lead contamination of road-side soil in towns between 12 m and 42 m from the centre of the road
(iv)	In the mid-1970s the use of lead in paints and the manufacture of cars that used leaded petrol was banned. Put a tick (/) in the box next to the statement which best describes what happened after the ban. [1]
	paint and petrol were lead-free by the mid-1970s anyway
	paint and petrol were not lead-free until 1980
	the use of lead-based paint and leaded petrol increased until 1980 before decreasing
	it took 15 years for paint and petrol to become lead-free

© WJEC CBAC Ltd.

(b)	(i)	Lead can form a number of oxides with different formulae. Red lead, Pb_3O_4 , is used to make batteries. It is manufactured by reacting lead carbonate with oxygen. Carbon dioxide is also produced.	Examiner only
		Balance the equation for this reaction. [1]	
		$PbCO_3 + O_2 \longrightarrow Pb_3O_4 + CO_2$	
	(ii)	11.36 g of a lead oxide contains 10.18 g of lead. Calculate the empirical formula of this oxide. [3]	
		$A_{\rm r}({\rm Pb}) = 207$ $A_{\rm r}({\rm O}) = 16$	
		Empirical formula	
			9
		END OF PAPER	

Turn over.

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		1

FORMULAE FOR SOME COMMON IONS

POSITIV	E IONS	NEGATIVE IONS		
Name	Formula	Name	Formula	
aluminium	Al ³⁺	bromide	Br ⁻	
ammonium	$\mathrm{NH_4}^+$	carbonate	CO ₃ ²⁻	
barium	Ba ²⁺	chloride	CI ⁻	
calcium	Ca ²⁺	fluoride	F ⁻	
copper(II)	Cu ²⁺	hydroxide	OH ⁻	
hydrogen	H⁺	iodide	1-	
iron(II)	Fe ²⁺	nitrate	NO ₃ -	
iron(III)	Fe ³⁺	oxide	O ²⁻	
lithium	Li⁺	sulfate	SO ₄ ²⁻	
magnesium	Mg ²⁺			
nickel	Ni ²⁺			
potassium	K ⁺			
silver	Ag^{+}			
sodium	Na⁺			
zinc	Zn ²⁺			

THE PERIODIC TABLE

Group

2

ŋ	
4	
~	

4	
~	

S	
4	
က	

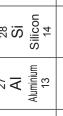
9	
Ŋ	
4	
က	

6 П
9t C
[∠] Z
45 C
= m

Hydrogen 1

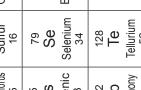
- エ

Boron 5 27 Al

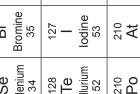

	Fluc	
\$ O	Oxygen 8	
⁺ Z	Nitrogen 7	
C 5	Carbon 6	
≃ ₪	Boron 5	

മ	ပ	Z
Boron	Carbon	Nitrogen
2	9	7
27	28	31
₹	S	۵
Aluminium	Silicon	Phosphorus
33	14	7

Neon 10 Argon 18







Sn Tin 50

115 In 1ndium 49

Cd Cadmium 48

Ag Ag Silver

106 **Pd** Palladium 46

103 **Rh** Rhodium 45

101 **Ru** Ruthenium 44

Fechnetium 66 1C

96 **Mo** Molybdenum 42

93 **Nb** Niobium 41

91 Zr Zirconium 40

89 Y Yttrium 39

Strontium

86 **Rb** Rubidium 37

84 **Kr** 36 36

210 At Astatine 85

207 Pb Lead

201 Hg Aercury 80

Au Gold

195 Pt Platinum 78

192 **|**

190 Os

186 Re

¹⁸ ≥

179 **Ḥ**

181 **Ta** Fantalum 73

139 **La** Lanthanum 57

137 **Ba** Barium 56

133 Cs Caesium 55

relative atomic mass

atomic number

Symbol Name Z /

204

131 **Xe** Xenon 54

59 Co Cobalt 27

56 Fe Iron 26

Manganese 25

Chromium 24

Fitanium 22

40 Ca Calcium 20

39 **K** Potassium 19

(3430UB0-1)

24 Mg Magnesium 12

23 Na Sodium 11

© WJEC CBAC Ltd.

63.5 Cu Copper 29